CHAPTER

8

Moving Beyond DTI: High Angular Resolution
Diffusion Imaging (HARDI)

There is no doubt that diffusion tensor imaging has
had a significant impact in neuroscience within a rela-
tively short amount of time. Nonetheless, it does suffer
from a number of limitations, many of which are now
increasingly recognized as being serious confounds.
These include in particular the so-called “crossing-
fiber” problem, as well as the non-Gaussian nature of
diffusion, both of which cannot be adequately
described using the diffusion tensor model. This has
prompted the development over the last decade of
numerous methods to avoid these limitations. In this
chapter, we outline these limitations and review some
of these alternative models.

8.1 LIMITATIONS OF DIFFUSION
TENSOR IMAGING

As previously highlighted, the diffusion tensor model
is a gross over-simplification of the actual anatomy. It is
inherently based on the assumption of Gaussian free dif-
fusion, which is clearly not the case even in coherently
oriented white matter bundles. Even in the ideal case,
there are many barriers to the movement of water
molecules, including axonal membranes and myelin
sheaths, so that diffusion in this environment is far from
“free”. There are two situations where these limitations
become apparent. One occurs when the diffusion signal
is measured over multiple b-values, in which case the
signal attenuation curve is clearly non-monoexponential
(Stanisz et al., 1997; Clark and Le Bihan, 2000; Beaulieu,
2002; Jensen et al., 2005.). The other situation occurs in
crossing fiber voxels, in which case the simple diffusion
tensor model is a poor fit to the observed DW signal,
and cannot provide an adequate characterization of the
fiber arrangement (Tuch et al., 2002; Wedeen et al., 2005;
Alexander et al., 2001). This last issue is particularly
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problematic for DTI applications, for the reasons out-
lined below.

8.1.1 The Issue of Crossing Fibers

The fact that the diffusion tensor is affected by cross-
ing fibers has been known since its very invention: in
1996, Pierpaoli and Basser attributed the observation of
low FA values in many deep white matter regions to
incoherence in the fiber orientations — in other words,
“crossing fiber” effects (Pierpaoli and Basser, 1996). The
term “crossing fibers” really refers to any situation in
which the fiber orientation is not unique, including inter-
digitating fibers and adjacent fiber bundles brushing
past each other, but also other situations such as bending
or diverging fiber bundles, where fibers are not crossing
as such, but the fiber orientation is not unique nonethe-
less. A few examples of these situations are illustrated in
Fig. 8.1.

In such situations, the diffusion-weighted signal is
not actually well described by the tensor model, as
shown in Fig. 8.2. It's easy to see in these examples
that there are features in the signal that are simply too
complex for the simple tensor model. It is no longer
possible to estimate the fiber orientations correctly,
and the anisotropy of the tensor will also be strongly
affected. Both of these effects have serious implications
for both tractography and for the interpretation of
anisotropy as a marker of white matter “integrity”.

8.1.2 Crossing Fibers are Endemic in Diffusion
Imaging

The effect of crossing fibers can easily be seen in FA
maps, particularly when compared with the
directionally-encoded color (DEC) maps. In Fig. 8.3, low
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FA values can be seen in many areas of pure white mat-
ter; by looking at the DEC map, it is clear that these areas
correspond to voxels bordering two distinct orientations.
Voxels in these regions will contain contributions from
both fiber tracts due to partial volume averaging, and
this will cause a drop in anisotropy. These effects are
inevitable given the low resolution typical of diffusion-
weighted imaging (of the order of 2 mm), and the rela-
tively small size of most white matter tracts: even the
cortico-spinal tract is only 8 mm wide at its thickest point
in the internal capsule, and 3 mm thick in subcortical
regions (Ebeling and Reulen, 1992).

FIGURE 8.1 Different fiber configurations that contain multiple
fiber orientations, which the diffusion tensor model cannot character-
ize adequately, and therefore fall into the “crossing fiber” category.
These include actual crossing fibers (bottom row), such as interdigi-
tating fibers (left) or simply two distinct fibers bundles brushing past
each other (right). Even though they do not contain crossing fibers as
such, curving fibers are also problematic since they contain a range
of orientations (top left). Any combination of these configurations
also lead to problems, for example two curving bundles brushing
past each other (top center) will contain both a range of orientations
(since the fibers are curving) and actual crossing fibers (where the
two bundles have different orientations). Diverging or “fanning”
fibers also contain a mixture of these effects (top right). As can be
appreciated, there is a large range of configurations that would give
rise to “crossing fiber” effects, and straight fibers really form only a
small subset of the full range of configurations likely to be found in

reality.
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These effects were initially believed to be restricted
to a few problem areas, with the rest of the white mat-
ter being adequately modeled with the tensor.
However, it is now clear that voxels containing “cross-
ing fibers” are very widespread throughout the white
matter. In fact, these effects can be detected in 90% of
white matter voxels (Jeurissen et al., 2012), as shown in
Fig. 8.4. This makes sense given the anatomy under
consideration, and strongly argues for a move away
from the traditional single tensor model, since it is
now clear that it cannot provide the type of informa-
tion that most people expect to get from it: fiber orien-
tations, and a marker of fiber bundle microstructure or
“integrity.”

8.1.3 Crossing Fibers have a Serious Impact on
Anisotropy

The impact of crossing fiber on tensor-derived
anisotropy measures is profound, and easy to see on
FA maps such as those shown in Fig. 8.3. In fact, it is
not uncommon to see regions of deep white matter
with near-zero anisotropy values. When looking at
these regions with more advanced higher-order mod-
els, it is clear that this is simply due to the presence of
two or more fiber bundles within the same voxel. An
example of this is shown in Fig. 8.5.

Clearly, knowing that crossing fibers are present
completely changes our interpretation of differences in
FA. In fact, a number of studies have shown elevations
in FA in cases where a reduction in FA would have
been expected given the pathology or condition
(Douaud et al., 2011; Tuch et al., 2005). The interpreta-
tion was that this was probably due to the expected
reduction in FA for one fiber bundle, with no changes
in other fiber bundles crossing through that region;
this is illustrated in Fig. 8.6.

FIGURE 8.2 In straight, coherent “single
fiber” bundles (left and center), the DW signal
(yellow) is well described by the tensor model
(green). When crossing fibers co-exist within
the same imaging voxel, the observed DW sig-
nal is essentially the sum of the DW signals
from each individual bundle. In this example,
the DW signal in the crossing fiber case (bot-
tom right) is the sum of the corresponding DW
signal for the two crossing fiber cases (bottom
left and centre). This contains features that the
tensor model cannot represent: the diffusion
tensor can only represent an ellipsoid, which is
effectively a sphere that has been stretched or
compressed in various directions. It cannot
capture the sharp features that can be seen in
the DW signal, which are essential for detect-
ing and resolving crossing fibers.

-
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The take-home message from these studies is that
while a given fiber bundle can have a reduction in its
intrinsic FA, this will often be observed as an elevation
of FA in crossing fiber regions that the bundle travels
through. This can sometimes be clarified to some
extent by the observation of a reduction in FA in a dif-
ferent, single-fiber part of the same tract, in which case
the simplest explanation is that this tract has reduced

FIGURE 8.3  The effects of crossing fibers can be seen on a simple
FA map. Bands of low anisotropy can readily be seen in FA maps
(highlighted by the arrows, left) in regions of deep white matter
remote from any grey matter (right). When compared with the corre-
sponding directionally-encoded color (DEC) map, it is clear that
many of the regions affected correspond to regions bordering distinct
colors — i.e. fiber bundles with different orientations. The most likely
explanation for the reduced FA in these regions is therefore that it is
due to the presence of crossing fibers.
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intrinsic FA throughout its length, which manifests as
an increase in crossing fiber regions. Unfortunately,
this is not always possible, as elevations in FA might
be the only significant observation in a particular
study. Obviously, this complicates the interpretation of
any observed FA differences, and the simplistic inter-
pretation of FA as a marker of white matter “integrity”
is simply flawed.

8.1.4 Crossing Fibers have a Serious Impact on

DTI Fiber-Tracking

The impact of crossing fibers on tractography
results is primarily due to inaccuracies in the esti-
mated fiber orientations. The way that streamlines are
propagated in most tractography algorithms (see
Chapter 9) is based on the local estimate of the fiber
orientation. Obviously, even a single bad orientation
estimate is enough to cause the algorithm to veer off-
course. Even if the error is small locally, it might be
enough for the algorithm to now be following an adja-
cent, but otherwise completely unrelated tract, as illus-
trated in Fig. 8.7. Furthermore, the very fact that the
error is due to crossing fiber effects implies that there
must be other tracts in the immediate vicinity that the
algorithm might choose to follow; in other words, the

FIGURE 8.4 The crossing fiber problem
has recently been shown to be very wide-
spread, as shown here. In the top panel,
white matter voxels where only one fiber
population can be detected are shown in
red, those where two distinct orientations
can be detected are in green, and voxels
where three or more can be detected are
shown in blue. Single-fiber regions are
essentially restricted to the mid-sagittal
portion of the corpus callosum, the cortico-
spinal tracts, and the body of the middle cer-
ebellar peduncles. The bottom panel shows
the proportion of each voxel that is taken up
by non-dominant fiber orientations; in other
words, that is contaminated by crossing
fibers. This demonstrates that these crossing
fibers are not just detectable, but that the
level of contamination is far from negligible.
(Images reproduced from Jeurissen et al.,
Human Brain Mapping 2012, doi: http://dx.doi.
0rg/10.1002/hbm.22099, with permission.)
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FIGURE 8.6 A reduction in anisotropy in one bundle (due for
example to degeneration) can lead to increased overall anisotropy for
that region. This can happen when the region originally contained
crossing fibers of comparable volume fraction (top left), and one fiber
bundle is selectively affected (top right) so that the intrinsic anisot-
ropy of that bundle is reduced. The diffusion ellipsoid in the original
case was not fully anisotropic, with an intermediate FA value due to
the crossing fibers (bottom left). If one of the fiber bundles degener-
ates, the amount of crossing fiber contamination is reduced, and the
overall FA consequently goes up, with a corresponding more elon-
gated tensor ellipsoid (bottom right).

FIGURE 8.7 An error at one point along the tract can cause the
algorithm to veer into an adjacent fiber pathway, and so infer con-
nectivity to the wrong region. Since this will in most cases be due to
crossing fiber artifacts, the point at which the error is most likely to
occur is precisely where the fiber-tracking algorithm can switch to an
adjacent fiber bundle, amplifying the impact of an error that might
otherwise have been negligible.

FIGURE 8.5 When looking at regions of low
anisotropy using higher-order models, crossing
fibers can readily be observed. In this example,
the region of the centrum semiovale highlighted
on the axial FA map (top left) can be seen to con-
tain regions of low FA, which correspond to
interfaces between bundles with distinct fiber
orientations (as can be seen from the DEC map,
bottom left). The main panel shows the fiber ori-
entation distributions estimated from the same
data using constrained spherical deconvolution
(described later) (Tournier et al., 2007). Crossing
fibers can be seen particularly in the same low
FA regions.

regions where the largest errors are likely to occur are
also the regions where such errors have the most dra-
matic impact. Obviously, this can easily amplify a rela-
tively trivial, local inaccuracy to produce a completely
different (and obviously incorrect) delineation of a
white matter pathway.

In fact, the impact of crossing fibers on tractography
is even more insidious, since fiber-tracking involves
propagation through the image. To delineate a path-
way from one region to the other might require track-
ing over 10—100 voxels, any one of which might
contain crossing fibers. Clearly, even a small propor-
tion of affected voxels would be enough to affect a dis-
proportionately large fraction of the generated tracks.
Even if only a third of white matter voxels were
affected, it would still be very difficult, if not impossi-
ble, to find even a single fiber pathway that bypassed
all of them, and hence remained free from crossing-
fiber artifacts.

The most obvious consequence of these tracking
errors is the appearance of false-positives in the
results: the algorithm produces tracks that are obvi-
ously not anatomically plausible. A classic example of
such a false positive is shown in Fig. 8.8. While it is
possible (indeed desirable) to impose prior anatomical
information to “filter out” such obvious false positives
(see Chapter 9), this can only be done when such prior
information exists and is reliable. This makes it partic-
ularly difficult to interpret unexpected fiber-tracking
results, for example where an unknown pathway is
observed in a particular cohort. Given the number of
possible confounding factors, such a finding will more
than likely be an artifact of the fiber-tracking. Only
when robust corroborating evidence can be found sup-
porting its existence can such a finding be given seri-
ous consideration.

A less obvious, but potentially far more devastating
consequence is the occurrence of false negatives. This is
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particularly problematic for the thinner parts of white
matter tracts, since in crossing fiber regions the tensor-
derived fiber orientation will be driven by the other,
more dominant tracts, making it impossible to delineate
these smaller tracts. Such false negatives are a very fre-
quent problem, and can easily be observed even in major
white matter pathways such as the cortico-spinal tracts
and the corpus callosum, as shown in Fig. 8.8. In fact,
results in these kinds of pathways are particularly mis-
leading, since the algorithm is able to delineate parts of
the tracts; this makes it very easy to overlook the fact
that the delineation is only partial. For example, it very
rare to observe any lateral projections of either the
cortico-spinal tracts or of the corpus callosum with
tensor-based fiber-tracking, even though these are
known to exist and are readily observable using fiber-
tracking based on higher-order models (see Fig. 8.9)
(Farquharson et al., 2012). This becomes a serious issue
when such results are used clinically, in particular for
neurosurgical planning, where the question is typically
one of establishing where the important tracts are not
present; if parts of the tract are not identified by the
fiber-tracking, the obvious interpretation that it is safe to
operate in these regions is clearly flawed. In fact, sole
reliance on DTI-based fiber tracking for neurosurgical
planning has been reported to result in post-operative

FIGURE 8.8 Fiber-tracking results obtained using DTI
by tracking from the mid-body of the corpus callosum (left)
and from the cortico-spinal tract at the level of the pons
(right)—the seed region is shown by the small white circles.
False positives are highlighted by the yellow arrows, and
consist of artifactual streamlines from the corpus callosum
down into the cortico-spinal tracts (left), and from the
cortico-spinal tract into the ipsilateral middle cerebellar
peduncle (right). These results are also affected by false
negatives, highlighted by the yellow circles; these consist of
the lateral projections from the corpus callosum (left) and
the lateral projections from the cortico-spinal tract (right).

FIGURE 8.9 Fiber-tracking results obtained
using a more advanced high-order model
approach combined with a probabilistic stream-
lines algorithm, using the same dataset and para-
meters as for Fig. 8.8. This approach produces a
much richer reconstruction, in which the lateral
projections of the corpus callosum (left) and
cortico-spinal tract (right) can readily be
observed. Note that false positives are still pres-
ent in these results, as highlighted by the yellow
arrows. In this case however, since a probabilistic
fiber-tracking algorithm was used, the low den-
sity of these false positive connections can be
interpreted as indicative of low probability.

loss of function that could otherwise have been avoided
(Kinoshita et al., 2005).

8.2 CONCEPTS FOR DEALING WITH
CROSSING FIBERS

It is now clear that crossing fibers deeply affect DTI
results, and at the very least this must be taken into
account when interpreting the results. However, in
many cases it will be impossible to make a robust
interpretation of the data, since there may be many dif-
ferent explanations for the results, each of which may
be equally plausible. Fiber-tracking results are particu-
larly difficult to interpret since there is no information
as to which pathway an artifact-free method might
have produced — all that is known is that errors are
likely to exist, and that these errors might lead to
potentially drastically different results.

To address these issues, it is clear that alternative
methods are required that are robust to crossing fiber
effects. Over the last decade, a large number of such
methods have been proposed, many of which are now
being used clinically with promising results. In this
section, we describe some of the concepts and theory
behind these methods.
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FIGURE 8.10 The relationship between the fiber configuration, the spin propagator, diffusion ODF, and fiber ODF. Consider a voxel con-
taining crossing fibers (center left, dotted square). In this environment, water molecules will be more likely to diffuse by larger distances along
the fiber directions. This is represented by a diffusion propagator with elongated ridges along these directions (center right). To extract and
display fiber orientation information from the spin propagator, it is common practice to collapse this information down onto the orientation
domain by radial projection, to form the diffusion orientation density function (ODF) (right). This function essentially represents the “mass”
of the propagator as a function of direction, and therefore contains peaks along the directions of the ridges in the spin propagator. For display
purposes, it is typically scaled so that its minimum and maximum values are zero and one respectively. An alternative representation for the
fiber configuration is by the fiber ODF (left). This function represents the “amount” (i.e. partial volume) of fibers aligned along the direction
of interest, and is therefore more closely related to the information typically required, e.g., for use in fiber-tracking.

The simplest situation to consider is what happens
when two fiber bundles cross within the same imag-
ing voxel. As already shown in Fig. 8.2, in this case
the DW signal has sharper features than can be
described using the tensor model. The question is
now one of finding a suitable way to represent the
information that we need to extract, and modeling
the way this information relates to the measured sig-
nal. There are two main ways of looking at the prob-
lem; one focuses on the properties of the diffusion
process, the other explicitly models the microstructure
of interest.

8.2.1 Diffusion in Complex Fiber
Arrangements: The Spin Propagator

It is possible to estimate the properties of the diffusion
process without making any attempt at relating this to the
microstructure explicitly. The information provided can
then be used to infer more relevant features in subsequent
steps. Conceptually, the advantage of this type of
approach is that it does not rely on an explicit model of
the microstructure, and so is theoretically less prone to
biases introduced by any assumptions inherent in such a
model — and given the complexity of the cellular micro-
structure, such assumptions are inevitable. These
methods are therefore often said to be model-free, although
this is a slight misrepresentation since subsequent proces-
sing steps needed to derive microstructural information
from the spin propagator will inevitably require a model,
with all the caveats that come with it (discussed
below). Nonetheless, the relationship between the
diffusion-weighted signal and the displacement of the
water molecules is well-known, and is given by the theory
of g-space (Callaghan, 1996).

Under the g-space framework, the diffusion proper-
ties are characterized by an entity known as the spin
propagator (also referred to as the spin displacement
probability density function (PDF)). This function
essentially quantifies the relative amount of water
molecules (spins) that have diffused away from their
starting positions by a given displacement. More for-
mally, the spin propagator can be written as P(x, r),
which essentially translates to: the proportion of mole-
cules at position x that have moved by a distance r
within the fixed diffusion time of the experiment.
Typically, x refers to the voxel location, with resolution
of the order of millimeters, while r refers to the dis-
placement of water molecules, with resolution of the
order of microns. As illustrated in Fig. 8.10, the spin
propagator efficiently captures all the diffusion-related
information, and is clearly dependent on the tissue
microstructure: spins will tend to diffuse larger dis-
tances along fiber orientations, forming elongated
“ridges” in the spin propagator.

In practice, the spin propagator will typically be
collapsed down to provide a more efficient, reduced
representation: the diffusion orientation density func-
tion (ODF), often also referred to as the dODF, or sim-
ply the ODF (this last acronym is not recommended
since it could cause confusion with the fiber ODF —
see below). This is done by a process of radial
projection: conceptually, this involves computing the
proportion of spins that have moved along any given
direction, regardless of the distance traveled. It can be
written more formally as ¥(x, 1), providing the propor-
tion of water molecules that have moved along the
unit direction 4 within the voxel at location x. As illus-
trated in Fig. 8.10, the dODF provides a reduced repre-
sentation of the spin propagator, efficiently capturing
the information related to its angular dependence.
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Most fiber-tracking algorithms that make use of such
data will typically use the orientations of the peaks of
the dODF as the estimate of the fiber orientation. While
this generally results in vastly improved estimates com-
pared to the diffusion tensor, using the peaks does have
its limitations, due to the fact that the dODF typically
contains broad peaks. This makes it difficult (if not
impossible) to resolve fiber orientations that are aligned
at relatively shallow crossing angles, and has also been
shown to introduce a bias in the orientation estimates
when the crossing angle is not 90° (Tournier et al., 2008;
Zhan and Yang, 2006). The other disadvantage of using
the peak orientations is that this process implicitly
assumes that the fiber orientations are discrete and
coherently oriented, which makes it impossible to char-
acterize curving or diverging fiber bundles.

8.2.2 The Fiber Orientation Density Function
Provides a More Direct Description of Fiber
Arrangement

An alternative way to look at the problem is to focus
directly on the desired information, typically the fiber
orientations. The question then is: if we know what
fiber orientations are present and in what quantities,
can we devise a model to predict the DW signal intensi-
ties? Obtaining the fiber orientations then reduces to
finding the set of model parameters (fiber orientations,
volume fractions, etc.) that best explain the measured
data — in other words, solving the inverse problem.
The advantage of these methods is that by focusing
directly on the desired information, it becomes possible
to estimate the parameters of interest using much fewer
measurements. In other words, since the model only
contains parameters that we are interested in, we only
need to acquire as many measurements as are required
to get a suitable estimate of these parameters, without
needing to characterize the whole spin propagator. The
other advantage is that we get the information we need
directly, with no further processing required.

There are various ways to represent fiber orientation
information. The simplest is simply as a list of orienta-
tions and their associated volume fractions. This however
requires the method to also estimate how many fiber
orientations there are in each voxel, which is another
potential source of error. It also implicitly assumes that
each fiber bundle is completely straight and coherent,
with no spread about its orientation. In other words, it
cannot account for curving or diverging fiber bundles,
which would exhibit a range of orientations. A more gen-
eral representation of the fiber orientations is provided
by the fiber orientation density function (fODF), also
known as the fiber orientation distribution (FOD). This
entity represents the amount of fibers aligned with any

particular direction, as a continuous distribution over the
sphere. More formally, it can be written f(x, 1), providing
the density of fibers along the unit direction # within the
voxel at location x. As illustrated in Fig. 8.10, the FOD
efficiently captures all the information related to the
arrangement of the fiber bundles.

Note that the FOD does not contain any information
related to the diffusion or microstructural properties of
the fiber bundles. This is a consequence of the fact that
most HARDI methods are geared towards identifying
fiber orientations, and it is much easier to estimate them
when the other variables are not considered. This poten-
tial limitation will be discussed in more detail in later
sections.

8.3 PRACTICAL APPROACHES TO
DEALING WITH CROSSING FIBERS

We need to consider a number of aspects to estimate
the fiber orientations in crossing fiber situations. First,
the data acquisition will need to be modified to ensure
that the data acquired actually contains the most rele-
vant information possible. This will typically be depen-
dent on the approach taken to estimate the orientations.
The next stage is to supply these data to the appropriate
algorithm for processing. Each of these stages will
require careful consideration to ensure the results are as
good as they can be within the amount of time available
for scanning.

8.3.1 HARDI Data Acquisition: Diffusion

Gradient Directions and b-Values

The first issue is that of data acquisition. While a lot
of work has gone into optimizing the acquisition pro-
tocol for DTI, it is less clear what the best parameters
are for higher-order models. This is partly due to the
fact that these approaches are more recent, but also
because there are many different algorithms available,
each of which includes different number of para-
meters, and each of which might produce output that
is different either in kind (e.g., spin propagator vs.
fiber orientations) or in representation (e.g., discrete
orientations vs. continuous ODF). Moreover, different
methods might require different types of data acquisi-
tions. This makes it very difficult to provide a single
set of optimal parameters suitable for all methods.

Nonetheless, it is possible to make some general
statements about the data acquisition. The following
considerations apply to the HARDI family of acquisi-
tion protocols, although many of the concepts will also
apply to the more advanced multi-shell HARDI and
DSI  acquisition protocols, which are discussed
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separately below. In essence, HARDI is simply an
extension of the simple DTI acquisition protocol: it
consists of a number of DW image volumes, each sen-
sitized to diffusion along a given direction with the
same b-value, with the DW directions distributed
uniformly over the half-sphere, along with a set of
non-diffusion-weighted, b=0 image volumes. The
parameters that need to be considered beyond those of
standard DTI (voxel size, number of slices, EPI band-
width, parallel imaging acceleration factor, etc.) are:
how many DW directions, and what b-value.

Before discussing these parameters, we should jus-
tify why we might want to use HARDI rather than any
other type of protocol. We could be acquiring multiple
b-values along the same directions, or even multiple
repeats of the same directions, or any other mixture of
different b-values along different directions. Essentially,
the main reason is one of time efficiency: scan times in
clinical practice are typically short, and every effort
must be made to optimize the amount of information
gathered within this narrow time frame. The aim is to
characterize the angular features in the DW signal that
are not apparent with DTI, such as those shown in
Fig. 8.2. To capture those more jagged features, we need
to sample the signal along a larger number of distinct
DW directions. This simple observation already dictates
an acquisition with a large number of DW directions.

Typically, there is no a priori information about the
orientations of the white matter structures we might be
interested in. This is especially true when the target
application is tractography, where tracts will be propa-
gated throughout the white matter, along pathways
with a whole range of orientations. This immediately
means that the protocol we use must not introduce any
bias between structures aligned along different direc-
tions; in other words, the results must be rotationally
invariant. This implies that the DW directions must be
distributed as uniformly as possible, but also that the
b-values used must be the same for every DW direction.

The final issue is how many b-values to use. The
main limitation here is one of scan time: given that we
already need to acquire a large number of DW direc-
tions, acquiring even a single b-value already demands
a relatively long scan time. All other thing being equal,
acquiring more b-values would require a further dou-
bling or tripling of the scan time. While there may be
distinct advantages to this type of acquisition, the best
protocol now depends on which combination provides
the most information for the target application. Some
studies may be interested in estimating microstructural
features, for example using approaches such as diffu-
sion kurtosis imaging (DKI; discussed later) that
require multiple b-values (Jensen et al., 2005). In this
case, the best approach may be to use fewer DW direc-
tions with multiple b-values, at the expense of the

orientation information. However, most studies will
focus on fiber-tracking, where orientation information
is paramount: in these cases, it makes sense to sample
orientation space as densely as possible using a single
b-value, since this is how the most relevant informa-
tion is likely to be obtained; this is the HARDI
approach.

HARDI is therefore arguably the most efficient pro-
tocol that can be devised to obtain the orientation
information required to resolve crossing fibers. The
remaining questions to be addressed are: how many
directions, and what b-value? These issues are still to
some extent unresolved, although there is a general
consensus that as many DW directions should
be acquired as time allows; most studies will use at
least 50 DW directions, some research studies use
more than 150. The optimal b-value is less clear, with
many studies still using DTI-optimal values of
b~ =1000 s/mm? in many cases, this choice of
b-value is probably influenced by the desire to ensure
the data can also be processed using DTI. It is also
probably influenced by the fact that high b-value DW
images clearly have reduced signal-to-noise ratio, due
to the higher attenuation induced by the diffusion
weighting, but also the longer echo time needed to
accommodate the long DW gradients needed
to achieve that b-value. However, what is required to
resolve crossing fibers is a high contrast-to-noise ratio in
the angular domain, and this is best achieved with
higher b-values, as illustrated in Fig. 8.11. Alexander &
Barker recommend a value of b~2,500 s/mm? based
on simulations (Alexander and Barker, 2005); others
suggest values of b=3000s/mm?” (Tournier et al,
2004; Jones et al., 2012). In general, b-values in the
region of 2,000—3,000s/ mm? are likely to be broadly
optimal in terms of fiber orientation estimation.

There are however some disadvantages to these high
b-values. While they undoubtedly improve the conspi-
cuity of fiber orientations, the low SNR of these images,
coupled with the strong contrast introduced by the
high b-value, makes it difficult to perform robust
motion correction or eddy-current correction on these
data, since most approaches to these problems rely on
image registration methods. Thankfully, a few methods
have been proposed recently to address this problem,
and will likely become available in the near future. The
other issue introduced by the low SNR is that of magni-
tude or Rician bias: MR images are typically provided
as magnitude data, explicitly preventing negative
values from appearing — this is unavoidable in DWI
because the phase of the image is corrupted by micro-
scopic motion in unpredictable ways. This means that if
the noise is large compared to the signal, it will tend to
increase the measured signal’s intensity. Since DWI and
particularly HARDI are low SNR techniques, this
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FIGURE 8.11 Dependence of the DW signal on b-value, for a single fiber direction (top) and two fibers crossing at 67° (bottom). At low b-
values, the DW signal varies smoothly as a function of orientation, and this essentially “blurs” the angular features when crossing fibers are
present. As the b-value is increased, the overall DW signal clearly decreases, but also becomes sharper, with much more pronounced loss of
signal along the fiber direction than across it. This means that when crossing fibers are present, the angular features are much more pro-
nounced, and the different orientations become much more conspicuous and can be resolved more readily. At very high b-values, the signal is
reduced further, with little increase in the sharpness of the features of interest. Based on these results, the best b-value to use is therefore in

the vicinity of b =2,500—3,000 s/ mm?®.

introduces a bias in the data that can give rise to arti-
facts such as the appearance of noisy peaks in the
results. Again, this is a topic of ongoing research and
methods to address these issues are likely to become
available in the near future. In the meantime, these
issues can be minimized by increasing the voxel size to
ensure adequate SNR, at the expense of spatial
resolution.

8.3.2 Q-Space Describes the Relationship
between the Diffusion Signal and the Spin
Propagator

Once suitable data have been acquired, the next
issue is how to derive fiber orientation estimates from
them. The first class of approaches is aimed at estimat-
ing the spin propagator (or reduced representations of
it) based on the theory of g-space, which relates the
DW signal to the spin propagator via a simple 3D
Fourier transform, in the same way that k-space relates
to MR images. The challenge here is to acquire data
over g-space in such a way that the Fourier transform
can be performed. At this point, it is helpful to define
what is really meant by g-space. In simple terms, a
position in g-space refers to a particular diffusion-
encoding gradient vector, according to the relationship
g =76G, where v is the proton magnetogyric ratio, ¢ is
the diffusion pulse duration, and G is the gradient vec-
tor (direction and amplitude). To perform the 3D
Fourier transform directly, data need to be acquired
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FIGURE 8.12  In Cartesian g-space sampling (as used for example
in diffusion spectrum imaging (DSI)), a large number of images need
to be acquired, each sensitized using a different diffusion direction
and gradient amplitude, so that the set of gradient vectors used cov-
ers g-space uniformly (left). On the other hand, high angular resolu-
tion diffusion imaging (HARDI) methods rely on dense sampling on
a spherical shell in g-space (i.e. using a constant b-value). This
involves the acquisition of an intermediate number of images, each
sensitized using the same b-value but different diffusion gradient
directions, so that the set of gradient vectors covers the sphere uni-
formly (right).

over a grid of points in g-space — in other words, the
end-points of the gradient vectors need to form a regu-
lar grid, as illustrated in Fig. 8.12.

This amounts to a potentially very large number of
images, with correspondingly large scan times.
Nonetheless, this is in essence what the diffusion
spectrum imaging method (DSI) does. 515 DW image
volumes are acquired over a grid in g-space (i.e. differ-
ent gradient vectors), and the spin propagator is then
obtained for each imaging voxel by a straightforward
Fourier transform. This technique provides arguably
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the most complete characterization of diffusion that
can be achieved, in the form of the full spin propaga-
tor. However, to extract information from the spin
propagator that can be used for applications such as
fiber tracking, subsequent steps are typically per-
formed to estimate the diffusion ODF, followed by
peak extraction (See Section “Diffusion in complex
fiber arrangements: the spin propagator” above). This
amounts to a huge reduction in the amount of infor-
mation, from 515 measurements per voxel down to ~9
to represent three fiber orientations. A criticism of this
approach in the context of fiber orientation estimation
is therefore that it seems very inefficient to acquire so
much data to estimate so few parameters. Nonetheless,
the acquisition can be performed in ~25 minutes on a
standard clinical scanner, which is within reach of
research studies.

Subsequent methods based on g-space were devel-
oped to estimate the diffusion ODF directly, without
needing the full spin propagator, using much shorter
HARDI acquisitions. The problem facing these methods
is how to perform the 3D Fourier transform when the
data have only been collected over a sphere in g-space.
To get around this, these methods assume a particular
radial dependence for the spin propagator (or the DW
signal itself), allowing them to perform the Fourier
transform while focusing on the angular dependence of
the signal. The first such approach is Q-ball imaging
(QBI), which was designed to provide the diffusion
ODF directly from a HARDI acquisition via the so-
called Funk-Radon transform (Tuch, 2004). This method
has since been refined using a spherical harmonic
framework (Hess et al., 2006; Descoteaux et al., 2007),
and more recently using solid-angle considerations
(Aganiji et al., 2010), yielding much improved estimates
of the diffusion ODF. Other HARDI methods based on
g-space include persistent angular structure (PAS)
MRI, which assumes the distance of water displace-
ments is fixed to perform the 3D Fourier transform
(Jansons and Alexander, 2003), and the diffusion orien-
tation transform (DOT) method, which assumes mono-
or bi-exponential decay of the DW signal as a function
of b-value to perform its 3D Fourier transform (Ozarlan
et al., 2006).

8.3.3 Mixture Models Allow us to Extract the
Fiber Orientations Directly

Another class of approaches is aimed at estimating
the fiber orientations directly. These methods are typi-
cally based on so-called mixture models, and rely on the
assumption of slow exchange: water molecules don’t
have enough time to move between the different fiber
bundles within the diffusion time of the experiment.

This greatly simplifies the problem, since it implies
that the DW signals from the different fiber bundles
are independent and simply add up linearly, rather
than interacting with each other in complex, non-linear
ways. The issue then reduces simply to modeling what
the DW signal should be for each fiber bundle, and
adding up the different contributions to form the full
mixture model.

The assumption of slow exchange is probably safe
in most cases, since the displacement of water mole-
cules is of the order of 5 um within a typical diffusion
time, and so exchange can only occur in places where
two fiber bundles are directly adjacent. Moreover,
there is good evidence that water within the axons
exchanges relatively slowly with the extra-cellular
compartment, and since ~80% of the water is intracel-
lular, the amount of exchange even with adjacent
axons will probably be negligible within typical diffu-
sion times.

The other assumptions commonly made relate to
the DW signal for each fiber bundle. Almost all meth-
ods will assume that the DW signal is axially symmet-
ric: it does not change if the fiber bundle is rotated
about its axis. This is considered a safe assumption,
since it is difficult to envisage a biologically realistic
situation that might cause such a systematic bias. A
more debatable assumption that is commonly made is
that the “shape” of the diffusion signal is constant
over all fiber bundles; in other words, all fiber bun-
dles have the same intrinsic anisotropy. Obviously,
this completely changes our way of looking at
diffusion-weighed imaging: we are now attributing all
observed variations in anisotropy entirely to partial
volume effects and crossing fibers — FA and related
measures no longer have anything to do with “white
matter integrity”. While this may at first sight seem
like an implausible (even absurd) assumption, it is
after all entirely consistent with Basser and Pierpaoli’s
original interpretation of anisotropy variations in
white matter as differences in the coherence of the
fiber orientations (Pierpaoli and Basser, 1996).
Furthermore, there are other very good reasons to
make such assumptions. First, even relatively large
variations in anisotropy do not change the shape of
the DW signal as much as might have been antici-
pated, as illustrated in Fig. 8.13. This means that even
if anisotropy was not constant, its effect on our esti-
mate of fiber orientation will be negligible. Another
reason is that it drastically improves the stability of
the parameter estimates: for example, a small change
in the intrinsic anisotropy of one fiber bundle causes
changes to the measured DW signal that look almost
identical to changes in its volume fraction; by making
anisotropy constant, the volume fraction estimate
becomes much more robust.

INTRODUCTION TO DIFFUSION TENSOR IMAGING



8.3 PRACTICAL APPROACHES TO DEALING WITH CROSSING FIBERS 75

+25% +50% +50%

()
0
Y
() ()
U

U

1

Fiber

—25% direction —50% —50%

0
0
0 6
v

FIGURE 8.13  The impact of small variations in axial (left) and radial (right) diffusivity on the expected DW signal. Changes in axial diffu-
sivity of the order of 25% lead to a fattening or thinning of the DW signal along the fiber axis. While such changes can be detected, the overall
shape of the signal remains comparable, and the effect of the estimated fiber orientation is therefore relatively minor. Changes in radial diffu-
sivity have a large effect on the amplitude of the DW signal in the plane perpendicular to the fiber axis (middle column). However, once
scaled down to match their original size, it is clear that the overall shape of the DW signal is largely unaffected. This means that changes in
radial diffusivity are essentially indistinguishable from changes in the partial volume fraction of the corresponding fiber bundle, while the
estimated fiber orientation is unaffected.
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FIGURE 8.14  If we can assume that two fiber bundles with distinct orientation have the same intrinsic DW signal, rotated to line up with
the fiber axis (first and second column), the DW signal that would be measured for the combination of the two bundles will simply be the
sum of their respective DW signals (center). This simple observation is the central concept behind approaches based on a mixture model. This
relationship can be extended to the case of a general distribution, the fiber orientation density function (fODF, denoted F(§,¢) in this example),
based on the concept of a spherical convolution, using the per-fiber bundle DW signal as the convolution kernel (otherwise known as the

response function). (Images reproduced from Tournier et al., Neurolmage 23:1176—1185, 2004, with permission.)

The simplest mixture model algorithm is the multi-
tensor fitting approach: the DW signal for each discrete
fiber orientation is modeled according the diffusion ten-
sor model, and these are then added up to give the
expected DW signal, as illustrated in Fig. 8.14. More for-
mally, the DW signal 5@, b) measured with diffusion
sensitization direction i with b-value b is given by:

N
S(L,b) = 8o Y fie D

where Sy is the non-diffusion-weighted signal intensity
and N is the number of fiber orientations included in
the model, each of which is characterized by its vol-
ume fraction f; and intrinsic diffusion tensor D;. The
problem is typically solved using optimization
approaches, to identify the set of parameters {Sy, N X
[fi, D;]} that best fit the measured data. As written, this
model includes 7N parameters, i.e. 14 parameters for
the two fiber orientation case. While solving this

problem is theoretically possible, the results of the fit-
ting process are unstable, for reasons outlined previ-
ously. To obtain a reliable fit, most implementations
will restrict the individual tensors to be axially sym-
metric (i.e. A\ = )3), and typically also fix all the eigen-
values, so that the tensors all have the same intrinsic
anisotropy. For example, in the ball and sticks model
(Behrens et al., 2007), the anisotropy is modeled as
FA =1, corresponding to A\, = A3 =0; in other words,
zero radial diffusivity. While this is clearly not biologi-
cally accurate, the benefits of simplifying the model
and the vast improvement in the robustness of the
model fit far outweigh the relatively small errors intro-
duced by this approximation.

Related methods include more advanced models
such as the composite hindered and restricted model
of diffusion (CHARMED) (Assaf et al.,, 2004; Assaf
and Basser, 2005). This models the DW signal from
each fiber bundles using a more biologically realistic
model of restricted diffusion in cylinders, and also
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includes a conventional diffusion tensor component to
model the extra-cellular compartment. This model
unfortunately requires a relatively lengthy multi-shell
HARDI sequence to obtain enough information for the
model fit, which is still reasonable for research studies,
but not for routine clinical use.

One limitation of these multi-compartment fitting
approaches is the need to estimate N, the number of
fiber orientations to include in the model for each vox-
el. As can be expected, the results will differ substan-
tially when the wrong number if used. In some
approaches, an estimate of this number is estimated in
a prior pre-processing step (Parker and Alexander,
2003), other approaches use model comparison techni-
ques to find which number provides the best fit to the
data (Hosey et al., 2005, 2008), and others use an auto-
matic relevance detection framework to drive fiber
bundles with negligible volume fractions to zero
(Behrens et al., 2007).

These multi-compartment approaches can be gener-
alized to represent the fiber orientation information
not as a discrete set, but as a continuous fiber orienta-
tion distribution (FOD — see above), as illustrated in
Fig. 8.14. The DW signal is then no longer modeled as
the sum of each (discrete) compartment, but by the
spherical convolution of the FOD with the expected
DW signal for a single fiber orientation. The process of
extracting the FOD then consists of performing the
inverse spherical deconvolution (Tournier et al., 2004).

Spherical deconvolution (like all deconvolution
methods) is very sensitive to noise effects. A number
of methods have been proposed to improve the robust-
ness of the results, most based on a non-negativity
constraint (Tournier et al., 2007; Jian and Vemuri, 2007;
Dell’Acqua et al., 2007). With these improvements, this
approach is robust enough to provide high quality
fiber orientation estimates from relatively modest, clin-
ically feasible HARDI acquisitions (typically <10 min-
utes), as shown in Fig. 8.5.

8.4 CAN HARDI PROVIDE MORE
INFORMATION THAN JUST THE FIBER
ORIENTATIONS?

The aim of most higher-order models proposed to
date is to provide more robust estimates of the fiber
orientations. In many cases, these models make the
explicit assumption that all fiber bundles look alike
when measured using diffusion MRI. As discussed
previously in Fig. 8.13, this is a good approximation
when estimating fiber orientations, but does not pro-
vide an alternative scalar measure of “white matter
integrity.” The question now is: can we derive any

microstructural information related to each fiber bun-
dle using these methods?

The first approach proposed to characterize anisot-
ropy in HARDI data was the generalized FA (GFA)
(Tuch, 2004). This is essentially the normalized vari-
ance of the diffusion ODF as computed using Q-ball
imaging (although other ODFs could equally be used).
The idea is that an isotropic ODF will have little or no
variance over orientations, whereas a strongly direc-
tional ODF will have large variance. While simple to
understand and compute, it is not a fully quantitative
measure, in that the ODF will depend on the b-value
used, the amount of noise in the data, and the particu-
lar parameters of the reconstruction. More importantly,
it is not easily interpreted from a biological point of
view, since as in the tensor case variations in GFA are
due predominantly by crossing fiber effects.

Another approach that is becoming popular is
diffusion kurtosis imaging (DKI)[4]. The idea behind
this method is to estimate how non-Gaussian the diffu-
sion actually is — in simple terms, how poor is the dif-
fusion tensor model at modeling the DW signal within
each voxel? The diffusion tensor model is based on the
assumption of free diffusion, characterized by a
normally-distributed (Gaussian) spin propagator.
Kurtosis is a general measure of the deviation of a dis-
tribution from the normal distribution, and is therefore
the logical metric to quantify non-Gaussian diffusion.
In essence, it adds an extra quadratic term to the other-
wise linear relationship between log-signal and b-value,
and so quantifies non-monoexponential behavior based
on the amplitude of this second-order term. This is clar-
ified in Fig. 8.15. DKI requires that data be acquired
using a multi-shell HARDI sequence, although a lim-
ited number of directions can typically be used, making
it suitable for routine clinical practice. One of the out-
standing issues with DKI is that the values produced
are still sensitive to crossing fibers effects. Nonetheless,
it has the potential to provide information that would
not otherwise be available, and in some cases this may
prove diagnostically useful, for example in assisting
with tumor grading (Van Cauter et al., 2012).

More advanced methods attempt to estimate biolog-
ically relevant parameters directly. Recent work has
focused on estimating axon diameters and densities
(Assaf et al., 2008; Alexander et al., 2010), something
that would clearly be of neurological interest. The
problem to overcome with these methods is that the
DW signal is relatively insensitive to changes in axonal
diameters. To overcome this, multi-shell HARDI
approaches are used with custom diffusion gradient
waveforms, with correspondingly long scan times.
Despite this, it remains very difficult to obtain robust
results within a realistic timeframe, and the axon
diameter estimates tend to be higher than expected.
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FIGURE 8.15

Diffusion kurtosis imaging (DKI) attempts to characterize the deviation of the DW signal from what would expected for

Gaussian (free) diffusion. Essentially, this means that the relationship between the log of the DW signal and the b-value, typically assume to
be linear in DTI, is extended to include a quadratic term (left). The amplitude of this quadratic term provides an estimate of the kurtosis, and
can be used to produce maps of the diffusion kurtosis for each DW direction (center). A map of the average kurtosis can also be generated by
averaging over all DW directions (right). (Images reproduced from Lu et al., NMR Biomed. 19: 236—247, 2006, with permission.)

Furthermore, these approaches are generally only
applicable in single fiber regions such as the corpus
callosum, since the presence of crossing fibers makes
the problem to all intents and purposes intractable.

Another recent approach is to estimate the apparent
fiber density (AFD), by exploiting the insensitivity of
diffusion MRI to axonal diameters (Raffelt et al., 2012;
Dell’Acqua et al., 2012). It is relatively simple to show
in simulations that the FOD amplitude as estimated by
spherical deconvolution (or partial volume fraction
when using multi-tensor approaches) is proportional
to the intra-axonal volume fraction of the fiber aligned
along that direction. This relationship is valid particu-
larly for b-values=3000s/ mmz, and the relatively
long diffusion times typically used on clinical systems.
Based on this observation, it becomes possible to
obtain independent measures of the AFD (i.e. the FOD
amplitude) for each fiber orientation within a voxel.
Coupled with advanced image registration and FOD
reorientation and modulation strategies, this makes it
possible to perform voxel-based analyses of AFD, and
observe tract-specific group differences even within
crossing fiber regions. While still relatively immature,
such methods may in the future provide valuable
information in a way that is robust to crossing fiber
effects.
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